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The paper presents a new analytical and experimental study of transonic flow 
around spheres. The results of the analytical study, which employs the method 
of orthogonal collocation for simultaneous solution of the momentum equations, 
the equation of continuity and the energy equation, are compared with hitherto 
unpublished measurements obtained on spheres of various sizes (1.02, 2.54 and 
3.81 em in diameter) in air, in dry steam and in wet steam with free-stream 
Mach numbers in the transonic range (0.58 < M, < 0.97). The relationship 
OSh = 91.78 + 8.59 M, between the attached-shock angle and the free-stream 
Mach number was obtained by fitting the theoretical pressure distributions 
to the experimental ones. 

1. Introduction 
The problem of axisymmetric flow of a compressible medium around blunt 

bodies has occupied a central position in the field of fluid dynamics in recent years. 
This can be traced to the practical importance of bodies of revolution in missile 
and launching vehicle aerodynamics, in aeroplane problems and in space re-entry 
problems. But the major portion of the research reported to date in this area is 
concerned only with flows that are either low subsonic or supersonic, and rela- 
tively little work has been published on transonic flows. It seems obvious, and we 
hope to show this in what follows, that a need exists for a simplified analytical 
solution of transonic flow around blunt bodies and that there is a definite lack of 
experimental data for such flows. To alleviate the situation we have studied 
transonic flow (0.58 < M, < 0.97) around spheres, both analytically and experi- 
mentally, and some of our findings are reported in this paper. 

For M, < 1 the flow past a sphere may be characterized with reference to 
critical values of the Reynolds and Mach numbers as follows. If the sphere is 
large, Recrit will be reached before Merit when the flow velocity is increased from 
zero. While Re < Recrit the boundary layer on the sphere will separate laminarly 
a t  about 82", this separation point continuously shifting downstream when Re is 
increased just beyond its critical value. On further increasing U,, Merit is reached. 
This signifies the start of conditions for which a supersonic pocket makes its 
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appearance adjacent to the sphere, terminating in a shock near 90". Interaction 
of this shock with the boundary layer causes the latter to separate at about the 
position of the shock, thus moving the point of separation upstream from its 
previous position and thereby increasing the wake to nearly the size it had when 
the boundary layer separated laminarly. 

If the sphere is small Merit is reached upon increasing the velocity while Re is 
still less than R e c r i t .  Boundary-layer separation will take place in this case at 
the position of the shock, at about go", owing to the interaction of the shock with 
the boundary layer. The size of the resulting wake is almost the same as for 
Re < Recrit and M, < Merit. A further increase in the Reynolds number has 
virtually no effect on the flow pattern, as the point of separation is fixed by the 
position of the shock even though the flow in the boundary layer might be 
turbulent. 

Theoretical solution of transonic flow presents quite a formidable problem. 
Kaplan (1940) found a solution for subsonic flow (M, < 0.5) around a sphere 
using the Rayleigh-Janzen method. Terms up to M$ were considered. 

Variational principles for irrotational compressible flow were first derived by 
Bateman (Serrin 1959) and have been used by Wang (1  948), Lush & Cherry (1956), 
Gispert ( 1  957), Rasmussen & Heys ( 1  974) and others to obtain solutions of sub- 
sonic flow around cylinders and other bodies. Wang & Santos (1951) used the 
variational method to fmd a solution for subsonic flow around a sphere at M, = 

0.5. In  spite of taking y = 2 for air, the agreement with the Rayleigh-Janzen 
method of solution was remarkably good. Lin & Rubinov (1  948) formulated a 
variational principle for rotational two-dimensional and axisymmetric flow. On 
the basis of this principle and Wang & Chou's (1951) work, Fizdon (1962) con- 
cluded that variational methods are promising for calculation of transonic flow. 
Rasmussen's (1974) review article on the application of variational methods in 
compressible flow calculations is very informative. 

Only three papers, to our knowledge, have attempted a solution of transonic 
flow around blunt bodies. Lipnitskii & Lifshits (1970) used a time-asymptotic 
fmite-difference method to solve the non-isentropic Euler equations and exact 
boundary conditions for closed blunt bodies. South & Jameson (1973) presented 
a fmite-difference relaxation method for numerical solution of the full potential 
equation and exact boundary conditions for general axisymmetric bodies (blunt 
or pointed nose). This method is also applicable to a supersonic free stream. 
However, these two methods were tried mostly on geometries other than spheri- 
cal; solution for a sphere was attempted a t  M, = 0.8 only. Furthermore no com- 
parison with experimental data was made. Agreement between the two methods 
for both the pressure distribution and the sonic line was poor. No attempt was 
made to investigate other Mach numbers. For transonic flow around a sphere 
South & Jameson concluded, "It would be interesting and valuable to have a 
third independent calculation for these flow fields, preferably with Euler's 
equations, to pin down with confidence the magnitude of the errors and distor- 
tion stemming from the isentropic assumption and lack of shock fitting. " Hsieh 
(1975) has used the method developed by South & Jameson for transonic flow 
(0.7 < Ma < 1)  around a hemispherical cylinder, but the agreement between 



Transonic flow around spheres 19 

theoretical and experimental pressure distributions is not satisfactory, nor do his 
theoretical flow-field predictions agree with flow-field shadowgraphs. However 
results at M, > 1.05 obtained from the computer programs developed by 
Aunaper (1970) compared well with the experimental results. 

The earlier experimental investigations were mostly conducted to obtain infor- 
mation about the drag coefficients for spheres. Wieselberger’s ( 1  922) report was 
followed by papers by Bacon & R.eid (1 924), Fage ( 1  936) and Charters & Thomas 
(1945). Later publications are those of Maxworthy (1969), Bailey & Hiatt (1970) 
and Achenbach (1968). Bailey & Hiatt measured the drag in the Mach number 
range 0-1-6.0 and the Reynolds number range 20-105. The tests were conducted 
in a ballistic range. Achenbach presented drag curves as well as information on 
the angular position of the separation point as a function of Reynolds number for 
a smooth sphere. Hundstat (1  953) developed a spherical probe for a low subsonic 
Mach number (0.2) and later Lee & Ash (1956) provided calibration curves for a 
three-dimensional spherical Pitot probe for Mach numbers up to 0.4. Naumann 
(1953) measured the drag coefficient of spheres in the domain lo5 < Re < 6 x lo5, 
0.3 < M < 0.9 of parameter space. He has shown the Reynolds number effect 
to be negligible when M > 0.7. Even at  Merit this effect is not discernible in the 
range 5 x lo4 < Re < 4-5 x 1 0 5 .  

Heberle, Wood & Goodrum ( 1  950) and Goodrum & Wood ( 1  951) have reported 
interferograms for supersonic flow around spheres in the range of free-stream 
Mach numbers 1-17-1.81. These two studies provide information regarding the 
location of the detached shock wave as well as the flow field behind the shock. In 
a recent study Hsieh (1975) reported tests on a hemispherical cylinder 1.0 in. in 
diameter and 10.0 in. long in the range of free-stream Mach numbers 0.8-1-3; 
schlieren photographs and pressure distributions were presented. 

2. Theory 

following assumptions are made. 
In the present formulation of the problem of transonic flow around a sphere the 

(i) The flow is parallel and uniform at infinity. 
(ii) The flow is axisymmetric and steady. 

(iii) The fluid is inviscid and in thermodynamic equilibrium and the effects of 

(iv) The solid surface is non-conducting. 
(v) The flow is isoenergic, i.e. 

heat conduction and radiation on the flow field are negligible. 

-- + 4q2 = c,, C, = constant. 
Y - 1 P  

When the free-stream Mach number M, is in the transonic range a supersonic 
pocket forms adjacent to the sphere. This pocket is bounded in the downstream 
direction by a shock wave which extends outwards from the solid surface and 
bounded in the radial direction by the position 1-2 diameters from the surface 
where the local Mach number is unity (Heberle et al. 1950). In  the region behind 



20 K .  R.  Jaikrishnan, A .  Z. Szeri and W .  M .  Rohrer 

the shock, extending to infinity in the downstream direction and bounded later- 
ally by the stream surface passing through the position where the shock termi- 
nates, the flow is rotational and of non-uniform entropy. This rotational flow 
region is denoted by D, while D, is the irrotational flow region. 

The diff'erential equations satisfied by the flow variables are as follows (relative 
to a spherical polar co-ordinate system). 

(i) The continuity equation 

( p w 2  sin 0),,. + (pvr sin B),  = 0. (1) 

(ii) The momentum equation 

P 

vv uv 
UV +A+-=--. 

r r  . .  
(iii) The energy equation 

(iv) The equation of state 
US, +vr-W, = 0. 

ClP in D,, 

The relevant boundary conditions are 

Across the shock, 
continuity equation 

where regions D, and D, have a common boundary, the 
holds good. To locate this unknown common boundary - -  I 

between regions D, and D, we treat the shock angle Osh as a parameter and opti- 
mize its value by fitting theoretical pressure distributions to experimental ones. 
In such a scheme theoretical flow predictions for D, would be meaningless owing 
to the simplicity of our model and we dispense completely with this region. 

The continuity equation ( 1 )  can be eliminated from further consideration by 
the introduction of the stream function Y ( r ,  0): 

U 1 V 1 
' r r  * - -___ _ -  -- 

U, pr2 sin2 B yo, u,- prsino 

Equations (1)-(3), (4a), (5a )  and (6) were simplified to a syst,em of two simul- 
taneous nonlinear partial differential equations in Y and p. These were then, in 
our f i s t  trial, reduced by the Galerkin-Kantorovich method and the ordinary 
differential equations that resulted were solved by Haming's modified predictor- 
corrector method. We have encountered difficulties with this solution scheme for 
two reasons: (a)  the domain of initial values which give stable solutions to the 
equations is small and ( b )  for higher-order Galerkin approximations the algebra 
proves to be far too taxing owing to the presence of the pY+l term in the equations. 
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Orthogonal collocation was tried and finally accepted. For the application of 
this method the flow field was made finite through the transformation 

z = ro/r, a = 6-71. 

z2Rj ( z )  Bi ( z )  z2dz = 0 

sin2a Qi (a2) Qi (a2) sin a da = 0 

In terms of the new variables ( l ) ,  ( 2 ) )  (4a) and (6) reduce to 

(7) 
z6Yi + z4Y; - 2 sin2a(alp2 - a,py+l) = 0, 

p(z2Yzz +22Y, +Yaa -Yacota) -z”zYz -Yapa = 0. 

(10c) 

(104  

) i f i + j ,  i , j = 1 , 2 , 3  ,..., N. 

Here 

and Y and p have been made dimensionless with rOpm Um and pm respectively, 
The boundary conditions (5a)  in terms of Y, p, z and a are 

Y(1,a) =Ya( i ,a )  = 0, Y(0,a) =Yo, Y(z,O) = 0) (8) 

where Yo = 0.5 sin2a (z-l- z )  is the incompressible stream function for flow 
around a sphere of radius z = 1.  

It was then assumed that both Y and p can be expanded in series of orthogonal 
polynomials. Thus the Nth approximations to the solutions Y and pare written as 

N f l  N+1 
YN = Yo + ( z  - z2 )  sin2a C C aij pi-, ( z )  Qjp1 (a2), 

(9) 
i=l  j=1 

N+1 N+1 

i = ,  j=1 
PN = 1 + z 2  Z 2 bi jRi -I (z )  Sj-1 (a2). 

Here N 2  is the number of interior collocation points while ( z  - z2), sin% and 22 are 
weighting functions, which make these expressions satisfy the boundary con- 
ditions (8). 

The orthogonal polynomials in (9) are defined as follows: 

.Pl (2) = R, (2) = Q1 (a2) = S, (a2) = I ,  

I / : ( z - z 2 ) P , ( z ) e ( z ) d z  = 0 

J Sj (a2) Xi (a2) sin a da = 0 

The trial functions for Y and p are substituted into (7) and the residuals set 
equal to zero a t  the collocation points ( z i ;  aj), i, j = 1, 2,  3, ..., N + 1. This pro- 
vides us with 2(N + 1)2 conditions for the determination of the 2(N + 1)2 unknown 
coefficients aij and bi j :  
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Probe diameter Free-stream Mach number, M ,  

Air Wet steam Dry steam 
r A > 

1.02 cm 0.594 0.59 0,772 
0.667 0.79 
0.756 0-7575 
0.97 

2.54 cm 0.59 
0.66 
0.748 
0.957 

3.81 cm 0.587 
0.655 
0.723 
0.938 

TABLE 1 

The two sets of nonlinear algebraic equations (1  1 )  and (12) were solved by the 
Newton-Raphson technique. Solutions were obtained with N = 1 and N = 2, 
resulting in 5 and 10 term expansions respectively for Y and for p, 

Once the solutions for YP and p have been obtained, the pressure distribution 
on the surface of the sphere in region D, can be calculated from 

It, was stated earlier that the parameter e s h  was optimized by fitting calculated 
to experimental pressure distributions. For low Mach number supersonic flow 
96' < 6sh  < 102" was reported (Heberle et al. 1950); this was the range of 6 s h  

first tried. By fitting the predictedp/p, to experimental data, we found that 

6sh = 91.78 + 8.59Mm (14) 

results in the best fit for spheres when 0.58 < M, < 0.97. 

3. Experiment 
Pressure measurements were made on spheres of various sizes (1.02, 2.54 and 

3.81 em in diameter) and in various media (air, dry steam, wet steam) with 
free-stream Mach numbers ranging from 0.58 to 0.97. The three diameters were 
selected in order to investigate the Reynolds number effect. Because of space 
limitations and the blockage effect of the large spheres only the D = 1.02 em 
sphere was tested in wet steam. 
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Reynolds number 
A Probe ,-- 7 

diameter M ,  = 0.58 M ,  = 0.66 M ,  = 0.75 M, = 0.95 

1.02 cm 1.18 x 105 1.3 x 105 1.5 x 105 1.78 x lo6 
2.54 cm 2.93 x 105 3.3 x 105 3.59 x 105 4.44 x 105 
3.81 cm 4.33 x 105 4.63 x 105 5.07 x los 6.34 x 105 

TABLE 2 

The 2.54 cm and 3.81 cm spheres were made from brass ball bearings. Two 
radially drilled holes were located a t  f 30" to the central hole. The pressure lines 
were brought out through the 1-91 cm diameter support tube. The sphere was 
held in a holder mechanism in such a way that the plane of the three pressure 
measuring holes was horizontal and the sphere could be rotated about its vertical 
diameter. The angular position of the pressure holes could be determined to 
within 0.5". Surface pressure readings up to f 60" were obtained. Readings 
beyond 60" could not be obtained for these two spheres because of the inter- 
ference of the support tube with the flow field. However the 1-02 cm diameter 
sphere did not suffer from this drawback because of the method of support. 

The smallest of the probes consists of a 1.02 cm diameter sphere with a 0.318 
cm support tube inserted into and extending through it, perpendicular to the 
main flow direction. A 0.041 cm diameter radially drilled hole on the surface of 
sphere is used to measure the pressure. The hole is located along the probe centre- 
line and passes through the centre of the sphere. This probe could be rotated 
through 180", and its angular position determined to within 0-05". 

All the air data reported here were taken in a free air jet which was obtained by 
expanding air through a 10.16 cm ASME long radius flow nozzle to atmospheric 
pressure. The spheres were placed a t  a distance of 15.2 cm from the nozzle throat, 
a t  which position the diameter of the jet was 10-0 cm. The D = 1.02 cm sphere 
was also tested in a steam tunnel of cross-section 5.08 x 30.48 cm2. Further 
details of the free air jet, the steam test procedure and the calculation procedure 
for ascertaining the test flow conditions are given by Jaikrishnan (1976). A 
summary of the principal experimental conditions is shown in table 1 .  Typical 
Reynolds numbers for the air data in table 1 are given in table 2 .  

4. Results 
A comparison of the experimental and the theoretical results has been made for 

all data indicated in table 1 in Jaikrishnan (1976). However, to be concise only a 
few representative results are shown here. 

Figures 1 and 2 show the ratio pipm (surface pressure to stream static pressure) 
plotted against angular position 8. The data displayed on the first of these figures 
were taken in air with the D = 2.54 cm probe. The data displayed in figure 2 were 
obtained in wet steam with the D = 1-02 cm probe. These figures also contain 
calculated results for the first ( N  = 1)  and second ( N  = 2) approximations to the 
power-series expressions for the theoretical solution. The figures show fairly good 
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PIPm 

1.3 1 

0.8 + 
P b m  

t 

0.8 I 
FIGURES 1 (a,  b ) .  For legend see facing page. 

agreement between our predictions and experiments. These predictions were all 
obtained with shock angles calculated from the linear relationship (14). Unfor- 
tunately we were unable to obtain direct verification of this formula. 

Figure 3 shows a comparison of the present solution, the solution of South & 
Jameson (1974) and the solution of Lipnitskii & Lifshits (1970) with our experi- 
mental data at  Nm = 0.8. From this comparison it appears that shock fitting, 
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FIGURE 1. p/pw vs. 19 for 2.54 cm sphere, air data, Mach number: (a)  Mw = 0.59, (b )  Mw = 
0.666, (c) M, = 0.748, (d )  M, = 0.957. A, experimental data; --, N = 2; - - a - ,  N = I. 



26 K .  R. Jaikrishnan, A .  2. Sxeri and W .  M .  Rohrer 

P I P m  

0 

FIGURES 2 (a, b ) .  For legend see facing page. 
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FIGURE 2. p/p, vs. 6 for 1.02 em sphere, wet-steam data. Mach number: (a) M ,  = 0.59, 
(b)  = 0.69, (c) H, = 0.7575. 0 ,  experimental data; -, N = 2; ---, N = 1. 

FIGURE 3. Comparison of various solutions. -, authors’ solution; - x -, South & Jameson 
(1974) ; -+, Lipnitskii & Lifshits (1970); -0-, authors’ experimental data. 
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FIGURES 4 (a, b ) .  For legend see facing page. 
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FIQURE 4. C,  218. 6. Mach number: (a) Ma = 0.59, (b)  M, = 0.66, (c) Ma = 0.749, 

(d) M, = 0-96. A, 2.54 cm sphere; 0, 3.81 cm sphere; 0, 1-02 cm sphere. 
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which is missing from the potential-flow solution of South & Jameson (1974), 
improves predictions considerably. 

Although air data for the various spheres were taken at Mach numbers close 
to 0.58, 0.66, 0.75 and 0.95, the Mach numbers of the various runs were not 
exactly the same. In  order to study the effect of the Reynolds number on the flow 
field, the normalized pressure coefficient C, = ( p  -pa)/@,, -pm) was calculated 
and is plotted against angular position in figure 4. At the lower Mach numbers 
the experimental points seem to fall on the same curve, indicating no Reynolds 
number effect in thedomain 1.18 x lo5 < Re < 5.07 x lo5, 0.58 < M < 0.75. This 
is in substantial agreement with conclusions reached by Naumann (1 953). At 
the highest Mach number tested, however, separation of experimental points 
according to the Reynolds number is indicated in figure 4(d). NO such effect 
could be shown theoretically and we suspect that stem blockage is responsible 
for the Reynolds number effect in this flow regime. Another contributing cause 
might be deviation from parallel flow conditions, resulting from distortion of the 
flow field owing to the presence of the larger spheres. 

The experimental work described in this paper was performed at the Westing- 
house Research Laboratories, Pittsburgh. The authors thank Westinghouse 
Research Laboratories for permission to use their test facilities and in particular 
Dr W. A. Stewart, Manager, Heat Transfer and Fluid Dynamics, for his interest in 
this work. 
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